AD=-AOT7 398 GENERAL RESEARCH CORP SANTA BARBARA CA SYSTEMS TECHNO--ETC FfG 972 <
USING ASSERTIONS FOR ADAPTIVE TESTING OF SOFTWARE.(U)
| SEP 79 D M ANDREWS FG9620-79-C-0115
| UNCLASSIFIED G6RC-TM=2270 AFOSR=TR=79=1142

..- 5

DATE
FILMED

12 —7Q

= i [I32 .
T

|
=1

o
O
o I

l
I

MICROCOPY RESOLUTION TEST CHART

MATIAMAL B

!.lslng1 Assertions
for Adaptive Testing of Software,

GENERAL

R E S EAR C H CORPORATION
A SUBSIDIARY OF FLOW GENERAL INC.

P.O. Box 6770, Santa Barbara, California 93111

79 11 27 u82

Approved for pudblic release}
distribution unlimited,

il

This paper was presented at the International
Pederation of Information Processing Society
Working Conference, September 26-29, 1979,
m' W.

Research reported in this docuuat wvas sponsored
by the Air Porce Office of Scientific Research
under Contract F49620-79-C-0115.

g s

:r«w- 1

|
. . -
4 i
| i
.§
. Research sponsored by the Air Force Office of Scientific
Research (AFSC), United States Air Force, under Contract
E F49620-79-C-0115. The United States Government is
i authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright
1 notation hereon.
{

Py
[

1 1

E 1l =

, AIR pogcg

-] t | OFFICE :

E ‘ v :gf:c:! OF 7 H?F r:urn’zc RESeancy |

1 IR st echnicny DD AFse)
3 e Qpp <. repom has

b e T puabl; bael‘) re

1 \ e Dlstribut 1 1; i:; tlease Law A:’;"“’fd and jg
- ;eh; BLOSE Uimiteq & 190<12 (7b)
t tm———— feal Inrormation ors

1 I | 5388 icer

-V | o

: ’,

it L. e —

E

11

G T oS L At

T T T e TS

Wasaoiail
P

[S—
L

USING ASSERTIONS
FOR ADAPTIVE TESTING OF SOFTWARE

Dorothy M. Andrews
General Research Corporation
P.0. Box 6770
Santa Barbara, California 93111
805-964-7724 ext. 336

ABSTRACT

One of the ways of assuring greater reliability of software is to
improve testing techniques. Three of the key problems associated with
software testing are: choosing adequate test cases, assuring
correctness of the results, and reducing the high cost of testing. Some
degree of automation is required to help solve these problems. By
combining the capability of adaptive testing with the use of executable
assertions, it is possible to automatically execute a program with 2
large number Of testcases over a wide range of input values. The
usual goal of adaptive testing is to maximize some performance value
(objective function) for the software by automated perturbation of the
input parameters in such a way as to degrade the system performance to a
specified 1limit. This technique only indirectly leads to locating
errors, because of the time-consuming task of examining the usual output
fram the program. In software testing, the primary goal is to locate
the maximum number of errors rather than maximize the performance value.
Since software errors can be detected by executable assertions, these
assertions can be used to define an objective function for the adaptive
tester so that a program can be tested automatically and a mapping made
of its "error space." A search algorithm is used to generate new test
cases based on past performance data about the number of assertion
violations. Software testing can become much more efficient and
effective through the use of adaptive testing with assertions, because
such extensive testing increases the possibility of finding any existing
errors and of improving software reliability.

page 1

T A TP A sy I BV Y e

P e e

=

o |

[=

JINTRODUCTION

Testing is one area of the software development cycle where there
is a need for vast improvement. It is frequently the most costly part
of the cycle and the most time-consuming. What is needed is not to put
more money and time into testing, but to devise a systematic method of
exercising a program with a sufficient number of input values over the
entire range of possible values in such a way that any existing errors
are discovered. To accomplish this goal and to automate as much of the
testing process as possible, the techniques developed for adaptive
testing are being combined with the use of executable assertions for
error detection.

Before software testing can be automated (and become cost
effective), two primary problems must be solved: developing adequate
test cases to identify errors, and verifying the results of these test
cases. The problem of developing test cases has been studied in the
Adaptive Verification and Validation research progran.' The method has
been to use various search techniques adapted from optimization theory
and artificial intelligence research in order to maximize a performance
value (objective function for the software). The original test cases
(input values) are either supplied by the tester or developed
stochastically. These values are then altered, through a feedback
mechanism using heuristics, to maximize the performance value,

In software testing, however, we are not so much interested in
maximizing performance as in locating errors. The technique of
maximizing a performance function only indirectly helps to locate errors
in the software. Errors are usually discovered by examining the output
of a program, which is a time-consuming task. Since software errors can
be detected through the use of assertions, assertions can be used as the
objective function, thus allowing the adaptive testing techniques to be
applied to the problem of testing software.

i e e L A o T R S AN

B T c——————

T o
[e—
[

[

8 e

ARAPTIVE TESTING
Adaptive testing is a technique for identifying how well a progras

performs in response to changes in its input values. The Adaptive
Tester was developed to test the response of simulated ballistic missile
defense programs to changes in a threat scenario. The prograa's
performance was defined by the number of re-entry vehicles which were

not intercepted.

The Adaptive Tester uses the principles of feedback and adaptive
search to identify scenarios which result in the maximum tolerable
number of re-entry vehicles penetrating the defense. An initial
scenario is described and input to the test case construction algorithm.
This algorithm generates a set of input values for the program being
tested. The program is executed and values are recorded which measure
its performance. The performance values are then evaluated and compared
with past performance values. The change in performance values is then
used as input to the adaptive search algorithm which constructs a new
scenario. New input data is constructed for this scenario and the
program is run again. This cycle continues until scenarios are found
which cause the maximum tolerable number of re-entry vehicles to
penetrate the defense. The input values which characterize each such
scenario, and the resulting performance values, define the "performance
boundary" of the program.

METHODOLOGY FOR ADAPTIVE TESTING WITH ASSERTIONS
In much the same way as the input parameters are systematically

perturbed to degrade the system performance until the performance
13 boundary is reached, the input parameters of a program can be perturbed

—— ————— -

until areas with maximum errors (indicated by assertion violations) are
located. The first step, therefore, is to add assertions to the code to
be tested, if that has not already been done. Actually assertions have
many uses and are extremely valuable throughout the entire software
cycle. Ideally they should be written during i.he design phase to state

Po——
LR

| w—

specifications about the variables before any coding takes place.
Later, during dynamic tests, these same assertions can be made
executable to help in program debugging. Assertions can also be left in
the code as a form of documentation, because they can contain much
useful information about variables (e.g., the expected range of values
or, in distributed systems, path or timing constraints). These built-in
specifications are a way of protecting the software during deployment or
maintenance from modifications to the code which may alter the expected
mode of operations.

Almost any condition or specification can be expressed using
executable assertions. An executable assertion is a logical expression
which, if evaluated to false, signals the violation of a specification
for the progranm. The logical operators of the assertions have been
extended to include the operators of first-order predicate calculus:
implication, existence, and universal quantifiers. A preprocessor
translates the assertions into executable statements. When the program
is executed, the logical expression in each assertion is evaluated. If
it is false, an error message is printed which states the name of the
module and the line number of the assertion statement. 1In addition, a
tabulation is made of how many times an assertion is violated.

The important role of the assertions in this type of testing
cannot be emphasized enough: they should be interspersed throughout the
code at appropriate plaoesz. there must be a sufficient number of
assertions to monitor each variable, and they must gorrectly state the
performance requirements of the variables. 1In other words, the success
of this type of testing depends on the validity and comprehensiveness of
the assertions.

To assure the correctness of the assertions, the second step is to
perform preliminary tests of the program with varied input values. A

page 4

[Sm—
‘

3
- .

-

[ON—r)
. .

L)
R e]

)
[e |

o e

frequent result of this initial testing is that unsuspected errors in
the code are uncovered by the assertions. Any errors in the code or the
assertions should be corrected before continuing.

The third step is to construct a set of test data by specifying
the possible range of values for the input variables. The initial value
of a variable is the minimum boundary value and the upper limit (and
final value) is the maximum specified value. Next some interval is
chosen through which the value of the variable will be stepped during
the testing. In this way, a "grid" of input values is defined over the
input space. Figure 1 shows the input space boundaries for a program
which was used as part of an experiment to determine if it was feasible
to merge the adaptive testing methods with the use of executable
assertions for this type of testing. The input values of the transit
times were within the range of 0 to 300 microseconds. The probability
of any one pulse request in the sequence of requests being a search
pulse was allowed to range between 0 and 1.

NUMBER OF ASSERTIONS VIOLATED

AN-51932

Tk ot & F b

TRANSIT TINE
(MICROSECONDS)

PROPORTION OF SEARCH PULSES
(PROBABILITY)

Figure 1. Input Space Boundary

page 5

Once the range of input values is specified and the interval
chosen, the rest of the testing is automated. The tester is relieved
not only of the chore of choosing new input data but also of the tedious
task of wading through reams of output to verify the results of each
test case. During the fourth step, the program is executed once for
each set of input values and a mapping is made of the error space. The
input variables of the program are defined as the independent variables,
and the number of assertions which become false when the program is run
with a particular set of input values is defined as the dependent
variable. Values of the dependent variable define an objective function
of errors over the input space. By maximizing this objective function,
we can locate the values of the input variables which cause the program
to fail.

Having defined the error function in much the same way as the
performance function is defined for the Adaptive Tester, the fifth step
then is to use the search algorithms of the Adaptive Tester to locate
values in the program's input variables which cause the most errors to
oceur, The reason we search for the area of maximum assertion
violations is to uncover as many errors as possible. Although some
errors will cause several assertions to be violated, other errors are
only indicated by a single assertion failure; therefore, it is essential
that the entire input space be searched for all possible violations.

Figure 2 shows the organization of the adaptive testing programs.
A test case construction algorithm takes the initial test data and
contructs a set of input values with which to run the program. These
input data values are also recorded in the test results file for use by
the search algorithm in altering the input data. The program is run and
the assertion evaluator evaluates the assertions as they are executed
and records any assertions that become false. The test results file is

G it ; i el i

e Gk o
" SRR e e - . E e - " "
R . . p— " SRT— U —————————————

then read by the search algorithm, which computes new values for the
input variables based upon the assertions violated and the past history
of the tests. These new values are input to the test case construction
algorithm, which forms a new set of input values for the program and
executes it.

BASIC) TEST CASE @
TEST CONSTRUCTION o1 TEST PROGRAM ~
DATA ALGORITHM 2

<

J

TEST
SEARCH ASSERTION
ALGORITHM "E.?I"tg S EVALUATOR

Figure 2. Software for Adaptive Testing Using Assertions

EXPERIENCE WITH ADAPTIVE TESTING USING ASSERTIONS

The process that generates a ralar schedule in a missile defense
simulation was chosen as the test object for a preliminary evaluation of
this method of testing sott.waro.3 This set of modules take a sequence
of requests for radar pulses and from these constructs a schedule for
the radar's time. This schedule must not overlap transmitted pulses
with each other or with listening times ("receive windows") and must
allow sufficient time between pulses and receive windows to switch beam
positions.

T

(R o le

e

W.
=

I
}
1
I

In order to show the error space more clearly, two of the input

variables were chosen as independent variables in the experiment: the
transit time for pulses (i.e., the time between the transmission of the
pulse and the receive window), and the number of search pulses in the
input sequence. Random input values were generated to simulate a
real-time process. The number of assertion violations for each set of
input values was tabulated during the testing for use in constructing a
three-dimensional grid. E

This purpose of this preliminary experiment was to determine what
the error space of a program looked like and whether it was feasible to
to use adaptive search techniques to maximize an error function. The
results of this experiment showed that the "error surface" from testing
this set of modules was well behaved. It contained maximums, minimums,
and gradients which could be used by various search techniques to locate
the values in the input space which cause the most errors. Figure 3
shows the results from testing this program with the set of input values
previously illustrated in Figure 1.

ASSERTION VIOLATIONS

TRANSIT
TIME

NUMBER OF
SEARCH
PULSES

Figure 3. Example of an Error Space Map

R i

,

SRRy
——y

&=

L

A second experiment on a much larger scale is now in progress. A
complex software program which computes orbital element vectors was
selected as the test object. Assertions were added, and a set of errors
for "seeding" the program were generated using methods developed by
current researchu. The errors are representative of those found in
large programs in both type and frequency of occurrences, and the sites

chosen for the seeding were randomly selected.

The input variables to the program are considered two at a time to
construct a three-dimensional error space. Two factors should be
considered in deciding which variables to perturb: it is most effective
to choose those variables which have the most influence on the final
output values, and those which provide collateral testing by exercising
other input variables that are dependent on them.

From the error functions derived from each two-variable case, a
complete error map will be constructed for the program. The error space
map will give a good indication of the shape and characteristics of the
error function of the program. The shape of the error function will
determine which search algorithms are most applicable to locating the
input values of the program which lead to the most errors. The
performance of the search algorithm chosen for the experiment will be
evaluated.

CONCLUSION

The final results of the current experiment will provide a second
evaluation of the effectiveness of using executable assertions for
software testing. In addition, the performance of the adaptive search
technique in locating the maximum value of the error function will
indicate how much automation is possible in the testing of computer
programs .

page 9

Another benefit of this project is a further merging of the
testing process with the requirements of fault tolerance in software.
Once an assertion indicates the presence of an error, one of two choices
is possible: either uncover the error and correct the code, or leave the
error in and provide a method to recover from it. Although such a
suggestion at first sounds incomprehensible, there are times when an
error cannot be found or, if found, is so complex that it cannot be
corrected easily without the possibility of introducing more errors.
Such might be the case in an algorithm that is basically correct but,
within certain ranges, produces incorrect results. If these ranges are
not expected to occur often, then the best solution may ve to provide

compensatory code in a recovery block.

A second related outcome of adaptive testing with assertions is
that the tabulation of assertion violations indicates which assertions
are potentially the most sensitive to errors and are, therefore, the
most valuable. This information makes it possible to optimize assertion
coverage in fault tolerant applications requiring minimal overhead.

ACKNOWLEDGEMENT
This research has been supported by the Air Force Office of

Scientific Research Contract No. F49620-79-C-0115, Dr. J. P. Benson,
principal investigator.

REFERENCES

1. D. W. Cooper, "Adaptive Testing," Second International Conference on Software Engineering,
13-15 October 1976, San Francisco, CA.

2. D. M. Andrews, "Software Fault Tolerance Through Executable Assertions," Twelfth Annual

Asilomar Conference on Circuits, Systems, and Computers, 6-8 November 1978, Pacific Grove, CA.
3. C. Gannon, R. Meeson, N. Brooks, "An Experimental Evaluation of Software Testing," Final Report,

General Research Corporation CR-1-854, May 1979.

4. J. Benson, S. Saib, "A Software Quality Assurance Experiment," Software Quality Assurance
Workshop, 15-16 November 1978, San Diego, CA.

5. T. A. Thayer, et al., Software Reliability Study, TRW Defense and Space Systems Group
RADC-TR-76-238, Redondo Beach, CA, August 1976,

page 10

e T pa il

: ‘\' mmmmm_, " R a0 ’?’ 't ‘_%\ WJ« ,_\ S
u e i 2 !
; SECURITY CLM# OQ:J!PFGEI(m:o Entered) e
: - REPORT DOCUMENTATION PAGE BEPOBE COMPLETING PORM
. REPORT NUMBER M2, GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER |
! AFOSR-TR- 79-1142
t 4. TITLE (and Subtitle) ; S. TYPE OF REPORT & PERIOD COVERED
}
USING ASSERTIONS FOR ADAPTIVE TESTING OF Interim
SOFTWARE 6. PERFORMING SRG. REPORT NUMBER
H T™ 2270
§ 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
D.M. Andrews "
'=F49620~-79-C-0115
9. PERFORMING ORGANIZATION NAME AND Aoo/zss 10. P ROCRAM ELEMENT. PROJECT, TASK
General Research Corporation
P.0. Box 6770
Santa Barbara, CA 93111 1102y . 2304/A2
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Air Force Office of Scientific Research/NM September 1979
Bolling AFB, Washington, DC 20332 13. NUMBER OF PAGES _
13 :
[T4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) | 5. SECURITY CLASS. (of this report)
UNCLASSIFIED
1Sa. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

—e
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if ditferent from Report)

Approved for public release; distribution unlimited.

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

L

v

20. _ABSTRACT (Continue on reYerse side If necessary end Identily by block number)
<One wayg of assuring greater reliability of software is to improve
testing techniques. Three of the key problems associated with software testing
are: choosing adequate test cases, assuring correctness of results, and reduci
the high cost of testing,> Some degree of automation is required to ‘help solve these é
problems. 3By combining the capability of adaptive testing with the use of i
executable assertions, it is possible to(automatically éxecute a programiwith a
large number of testicases over a wide range of input values. The usual goal

of adaptive testing is to maximize some performance value (objective ﬁmction):

» FORM)
, DD 3%, 1473 | UNCLASSIFIED Yover)
E] \ l 82 i3 SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

T O

S

T secumrr consrcar 01 Ok Rt Lok Bl e

-

' d

20. Abstract continued. ‘ i) .8 o

/

L bu *
for the software by automated perturbation of the input parameters /in such
a way as to degrade the system performance to a specified limit, This
technique only indirectly leads to locating errors, because of “..e time-
consuming task of examining the usual output from the program.> In softward
testing, the primary goal is to locate the maximum number of errors, rather
than maximize the performance value. ~Since software errors can be
detected by executable assertions, these assertions can be used to define
an objective function for the adaptive tester so that a program can be testled
automatically and a mapping made of its MNerror space.? A s h algorithm
is used to generate new test cases based on past performance data about

the number of assertion violations.
efficient and effective through

Software testing can become much more
Use of adaptive testing with assertiong

because such extensive testing increases the possibility of finding any
existing errors and of improving software reliability.

4>

(Jz)

'INCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

SR TRCATE AR, TR O T A T R TN LAY PPN

——

